
Implementation Note on Embedded Multiresolution

Mixtures (EMM) in the MATLAB Environment

Roland Kwitt
Department of Computer Sciences

University of Salzburg
E-Mail: rkwitt@gmx.at

Source: http://www.wavelab.at/sources

July 23, 2009

In this technical note, we explain our implementation of the Embedded Multiresolution Mix-
tures (EMM), as they first appeared in a work by Vasconcelos and Lippman [5]. Further, we
present the implementation of several similarity measures between the EMMs which are all more
or less accurate approximations of the Kullback-Leibler divergence.

1 Notation

Before we go on, we introduce some notational conventions. All letters written in typewritten
font, e.g. A,b, etc., denote MATLAB variables. Small boldface letters such as x denote vectors,
big boldface letters denote matrices, e.g. Σ.

2 Dataset Construction and GMM Learning

The basic building blocks of [5] are the Discrete Cosine Transform (DCT) and multivariate
Gaussian Mixture Models (GMM). The idea is to move a sliding window of N × N pixel over
the whole input image with a predefined stepsize of d pixel in both (i.e. vertical and horizontal)
directions. Originally, a 8× 8 window and d = 2 are proposed. At each new window position the
DCT is applied and the first K coefficients are extracted. Since the original paper does not give
a description of how to extract the first K coefficients, we adopt the commonly-known zigzag
scan order. The whole principle is illustrated in Fig. 1. The corresponding MATLAB function
is [data,J] = dct2block(I,blksize,cnum,shift).

function [data,J] = dct2block(I,blksize,cnum,shift)
szx = size(I,1);
szy = size(I,2);
cnt = 1;
N = (szx-blksize)/shift + 1;
J = zeros(blksize,blksize,N*N);
for i=1:shift:szx-blksize+1

for j=1:shift:szy-blksize+1

1

8× 8

Figure 1: Illustration of the sliding 8 × 8 window and the zigzag-scan extraction of the first 16
DCT coefficients (including the DC coefficient).

blk = I(i:i+blksize-1,j:j+blksize-1);
J(:,:,cnt) = dct2(blk);
cnt = cnt + 1;

end
end
Z = zigzag(blksize);
it = 1;
for z = cnum

tmp = [J(Z(z,1),Z(z,2),:)];
data(:,it) = tmp(:);
it = it+1;

end
end

The dct2block routine arranges the K coefficients of all M sliding window positions in a
M × K matrix X (return value data of the routine dct2block). Since the DCT possesses very
good decorrelation properties (asymptotically close to the optimal decorrelating transform), the
coefficients can be assumed uncorrelated. By assuming that each row-vector xi ∈ RK of the
matrix X is a realization of some underlying distribution, we can use x1, . . . ,xM to fit a multi-
variate Gaussian Mixture Model (GMM) with C components. In the original paper the authors
propose to use C = 8. In detail, the MATLAB Statistics Toolbox routine gmdistribution.fit
is used to estimate the GMM parameters. Due to the fact that we assume no correlation between
the coefficients, we can use a diagonal covariance matrix for each mixture component. The call
to the gmdistribution.fit to fit the GMM is

...
obj = gmdistribution.fit(data, ...
8,’CovType’,’diagonal’,’Options’,options, ’Regularize’, eps);
...

which uses the default initialization of the gmdistribution.fit routine and regularizes the
covariance matrices by adding a small constant value ε > 0 to all diagonal elements. More
advanced initialization will be discussed next.

2

2.1 Initialization of the EM Algorithm

A critical issue for running the EM algorithm to fit a GMM is the initialization of the GMM
parameters. Each component of the GMM requires a weight, a mean vector and a diagonal
covariance matrix. The starting parameters of the EM algorithm are initialized according to [4],
where the author uses the Linde–Buzo-Gray (LBG, aka generalized Lloyd) algorithm [1] with the
codeword splitting procedure proposed by Gray [3]. LBG terminates when the difference between
the average distortions of two successive iterations is less than 10−3. The initial mean vectors
of the GMM are taken to be the codebook vectors of the LBG algorithm. All samples are then
assigned to the nearest codebook vectors and the component-wise variance is used to initialize the
diagonal elements of the GMM covariance matrices. The proportion of samples corresponding
to each codebook vector are used as distribution weights. Next, we can run the EM algorithm,
which terminates if either 200 iterations are reached or the log–likelihood difference between two
successive iterations is less than 10−6. the code snipplet for initializing the EM algorithm using
LBG is

...
[mv,assignment] = vqlbg(block’,components);
for a=1:components

modelI.mu(a,:) = mv(:,a)’;
modelI.Sigma(1,:,a) = var(block(assignment == a,:));
modelI.PComponents(a) = length(find(assignment == a))/length(assignment);

end
...

and the vqlbg algorithm (LBG) is implemented by the following routine. Note that d denotes
the dataset and k denotes the desired number of codebook vectors. The output argument r gives
the resulting codebook vectors and ind contains the assignment of each sample to one of the k
codebook vectors.

function [r,ind] = vqlbg(d,k)
e = .001;
r = mean(d, 2);
dpr = 10000;
for i = 1:log2(k)

r = [r*(1+e), r*(1-e)];
while (true)

z = disteu(d, r);
[m,ind] = min(z, [], 2);
t = 0;
for j = 1:2^i

r(:, j) = mean(d(:, find(ind == j)), 2);
x = disteu(d(:, find(ind == j)), r(:, j));
for q = 1:length(x)

t = t + x(q);
end

end
if (((dpr - t)/t) < e)

break;
else

3

dpr = t;
end

end
end

3 What are Embedded Multiresolution Mixtures ?

Regarding the notion of embedded multiresolution mixture model, we have to establish some
theory first. The general GMM with C components is given by

P (x) =
64∑

c=1

πcG(x, µc,Σc), (1)

where µc and Σc signify the mean vector and covariance matrix of the c-th mixture component.
Vasconcelos recapitulates that by restricting a Gaussian distribution in Rn to Rk with k < n, it
is still a Gaussian. This fact can be extended to Gaussian mixtures as well. Hence, if we extract
the first k elements of each mean vector µc and the upper k×k matrix of each covariance matrix
Σc, we obtain an embedded mixture model. In the context of modeling the DCT coefficients this
embedded mixture model is termed a embedded multiresolution mixture model (EMM), since
the DCT is actually a multiresolution decomposition. In case C = 1, we simply approximate
the DC coefficient histogram. As it is noted in the original paper, increasing the dimensionality
captures more frequency information on the one hand, but we loose rotational invariance on the
other hand. However, the most interesting point is, that we only have to estimate the EMM
for all 64 coefficient of the 8 × 8 window once and can then simply reduce the dimensions by
the aforementioned procedure. In our implementation the embedding process is accomplished
by the function em = emmembed(models,emNum). Note, that we try to capture cases where
positive-definiteness is possible violated. This is done in this routine, so that the MATLAB
function gmdistribution.fit does not complain and exits. The routine returns the EMM in
the variable em.

function em = emmembed(models,emNum)
for i=1:size(models,2)

newSigma = models{i}.Sigma(:,1:emNum,:);
[d1,d2,d3] = size(newSigma);
for j=1:d3

% check for entries which indicate non positive definiteness
[maxi,indmaxi] = max(newSigma(:,:,j));
[mini,indmini] = min(newSigma(:,:,j));
if (mini < maxi*eps)
newSigma(:,indmini,j) = maxi*eps;
end

end

em{i} = gmdistribution(models{i}.mu(:,1:emNum), ...
newSigma, ...
models{i}.PComponents);

end
end

4

4 Example

This example loads the 128×128 image Bark.0000.01.tif of the MIT VisTex database, extracts
the first 16 DCT coefficients of each 8 × 8 sliding window (step size d = 2) and then fits a
GMM using C = 8 components with the default initialization routine (i.e. random, type help
gmdistribution.fit’ for further explanations). We subsequently construct a EMM of the first
8 DCT coefficients using emmembed.

>> I = double(imread(’/data/pictures/Bark.0000.01.tif’));
>> data = dct2block(I,8,1:16,2);
>> model = gmdistribution.fit(data,8, ...
’CovType’, ...
’diagonal’, ...
’Options’, ...
options);
53 iterations, log-likelihood = -328622
>> model = emmembed({obj},8)

5 Measuring Image Similarity

As a last point, we explain how to measure image similarity in the framework of EMMs. We
implement the Feature-Likelihood (FL) originally proposed in [5] and two approximations of the
Kullback-Leibler divergence between two GMMs: an approximation proposed by Goldberger et
al. [2] and the Asymptotic Likelihood Approximation (ALA) of Vasconcelos [4]. Further, we
provide code for performing a Monte-Carlo simulation to approximate the KL divergence.

5.1 MC Approximation of the KL Divergence

Let p and q denote the pdfs of two C component EMMs of a certain dimensionality. The MC
simulation approach is quite simple, since it exploits the fact that the term

1
N

S∑
s=1

[log p(xs)− log q(x)] (2)

converges to the KL-divergence between p and q, given a random sample from p. In our imple-
mentation the overloaded MATLAB function random is used to draw a such a random sample
from a given model. The pdf of each EMM using the data samples x1, . . . ,xS is evaluated by
using the overloaded MATLAB function pdf. In MATLAB syntax, assuming that A and B denote
two fitted EMMs, a full example using MC simulation reads as

>> S = 10000;
>> r = random(A,S)
>> 1/S * sum(log(pdf(A,r))-log(pdf(B,r)));

The MC simulation appears in the function rankemm which is not listed here, since it is a
wrapper to evaluate similarities between all models.

5

5.2 ALA and Goldbergers Approximation

In order to compute the ALA and Goldberger’s approach, we need to know how to access
the mean vectors and covariance matrices of the fitted models. MATLAB returns a structure
when gmdistribution.fit is called which holds all the necessary information. To access the
covariance matrix of the i-th component, we write model.Sigma(:,:,i) to obtain the diagonal
elements as a row vector. To get a matrix, we write diag(model.Sigma(:,:,i)). The mean
vectors are extracted in a similar fashion using model.mu(i,:) to obtain the mean vector µi.
The weights πi are stored in the structure field PComponents. Hence, A.PComponents(i) gives
πi. This is all we need to implement both approximations. Again, let p and q denote the pdfs
of two EMMs and let pi and qi denote the pdfs of the components. Further, αi, βi denote the
weights of each component. Both [4] and [2] have the general form

D(p||q) =
C∑

c=1

αc

(
D(pi||qr(c)) + log

αc

βr(c)

)
(3)

and differ only in the so called alignment function r(c). Vasconcelos [4] defines r(i) as

r(i) = arg min
j

(
(µp,i − µq,j)Σ−1

q,j(µp,i − µq,j)T
)

(4)

whereas Goldberger defines r(i) as

r(i) = arg min
j

1
2

(
log

|Σq,j |
|Σp,j |

+ trace
(
Σ−1

q,jΣp,j

)
+ (µp,i − µq,j)Σ−1

q,j(µp,i − µq,j)T −N

)
− log βj ,

(5)

where N denotes the dimensionality of the EMMs. Both approaches are implemented in the
MATLAB function klapprox which takes as arguments the two fitted EMMs Q and I, as well
as the number of EMM components C, the dimensionality N and the method to use. method can
either be ’vasc’ or ’gold’.

function D = klapprox(Q,I,C,N,method)
D = 0;
for j=1:C

switch method
case ’vasc’

d(j) = vascalign(Q,I,C,j);
case ’gold’

d(j) = goldalign(Q,I,C,j,N);
end
D = D + Q.PComponents(j) * ...

(kldivgauss(Q.mu(j,:),I.mu(d(j),:), ...
diag(Q.Sigma(:,:,j)),diag(I.Sigma(:,:,d(j))),N) + ...
log(Q.PComponents(j)/I.PComponents(d(j))) ...
);

end
end

The alignment function for Goldbergers approximation [2] is implemented as

6

function ind = goldalign(Q,I,C,i,N)
dist = [];
for j=1:C

dist(j) = kldivgauss(Q.mu(i,:),I.mu(j,:), ...
diag(Q.Sigma(:,:,i)),diag(I.Sigma(:,:,j)),N) - log(I.PComponents(j));

end
[mini,ind] = min(dist);

end

and Vasconcelos’ [4] alignment function is implemented as

function ind = vascalign(Q,I,C,i)
x = Q.mu(i,:);
for j=1:C

y = I.mu(j,:);
S = diag(I.Sigma(:,:,j));
dist(j) = (x-y)*inv(S)*(x-y)’;

end
[mini,ind] = min(dist);

end

5.2.1 Running the C Code

Since both approximations are computationally expensive although they just use the GMM
parameters (due to the alignment process), we provide C source code for both approximation
in order to run similarity measurement between all models and compute a distance matrix.
However, this requires to store the fitted EMMs on the harddisk. Note that our C source code
only deals with diagonal covariance matrices. The routine to dump the EMMs to harddisk is
dump emmsimple which is called as follows: the EMMs have to be stored in a cell array which
contains the fitted gmdistribution objects. Lets call this cell array fe and assume that it
contains EMMs with C = 8 components and the dimensionality is 60. The directory where we
dump the models is /tmp/emm (has to exists) and the offset (last parameter) is 0. This means
that we dump all models. In case the offset is > 0, we start dumping models at model index
offset.

>> dump_emmsimple(fe,8,60,’/tmp/emm’,0);

The directory then contains C·2+1 files for each model. For model0 and C = 8 for example, we
obtain: model0.0.mu, . . ., model0.7.mu, model0.0.cov,. . .,model0.7.cov, model0.pi. These
files are used by the binary emmsimple to compute Goldbergers approximation. The source code
can be found in the sm subdirectory and is compiled by running

$ make -f Makefile.emm

which gives the binary emmsimple. Typing emmsimple --help lists all available input parame-
ters. In case of a C = 8 component EMM with dimensionality 60 we first copy this binary to
the directory /tmp/emm (from the example above) and then run (Goldberger approximation)

$./emmsimple -C 8 -P 60 -v

to obtain a distance matrix dist.bin. To use the alignment proposed by Vasconcelos use the
binary ala with the same parameters. The switch -v turns on verbose output messages. You

7

can further obtain a symmetric version of the approximations by using the switch -S 1. The
implementation of the symmetric version simply swaps the models and averages the distance
(this is the standard way to artificially symmetrize the KL divergence). The resulting distance
matrix dist.bin can then be further processed in C, or loaded in MATLAB. For C processing,
we note that the matrix is written using the GSL routine gsl matrix fwrite and can easily be
read using gsl matrix fread. In MATLAB, the distance matrix can be loaded using

>> fid = fopen(’/tmp/emm/dist.bin’,’rb’);
>> A = fread(fid,’double’);
>> fclose(fid);
>> A = reshape(A,[sqrt(length(A)) sqrt(length(A))]);

5.3 Feature Likelihood

Last, we discuss how to measure image similarity using the Feature-Likelihood proposed in [5].
The idea is very simple: instead of computing a DCT on each overlapping 8 × 8 subwindow,
we compute a DCT on all non–overlapping 8 × 8 subwindows of a query image and extract
the same coefficients as we uses during EMM fitting. Hence, we obtain a considerably smaller
amount of feature vectors. These vectors are plugged into the pdf of the each fitted EMM and
the likelihood (or more specifically the log-likelihood) is computed. Summing up this value over
all extracted feature vectors gives the final feature likelihood. This measure is then used as
a similarity criterion between the query image and a candidate image (or more specifically its
EMM model). To obtain the feature vectors, use the MATLAB function exzz together with the
MATLAB-intern function blkproc. Next, we show an example of how to compute the feature
vectors for a color image using 8 × 8 blocks for the DCT (assume the image was loaded into I
using imread).

>> for c=1:size(im,3)
J(:,:,c) = blkproc(I(:,:,c),[8 8],fun);

end
>> X = exzz(J,’blk’,8,’coefficients’,1:16,’debug’,debug);

The variable X now contains the feature vectors (each row is a feature vector of dimensionality
48). The number of vectors depends on the original image size and the blocksize of course. Given
X, you can simply calculate the feature likelihood under model modelA using

>> fl = sum(log(pdf(modelA,X)));

In order to use the feature likelihood in the same way you can use emmsimple and ala for
example, we provide a MATLAB routine emmfl (EMM Feature Likelihood). This routine accepts
a cell array of gmdistribution objects as a first argument. Optional parameters, such as
preprocessing, etc. can be listed by typing help emmfl. An exemplary call of emmfl using the
EMM models stored in models for example is as follows:

>> D = emmfl(models,’debug’,true);

References

[1] A. Gersho and R. Gray. Vector Quantization and Signal Compression. Kluwer Academic
Publishers, 1992.

8

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

180

MC (10000)
Vasconcelos
Goldberger

Figure 2: Visualization of the approximations of Vasconcelos and Goldberger compared to the
Monte-Carlo simulation with 10000 samples for similarity measurement between one fitted EMM
model and 50 candidate EMM models

[2] J. Goldberger, S. Gordon, and H. Greenspan. An efficient image similarity measure based
on approximations of the KL-divergence between two Gaussian mixtures. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV’03), pages 487–493, Nice,
France, 2003.

[3] R. Gray. Vector quantization. IEEE Accoustics, Speech, and Signal Processing (ASSP)
Magazine, 1(2), April 1984.

[4] N. Vasconcelos. On the efficient evaluation of probabilistic similarity functions for image
retrieval. IEEE Transactions on Information Theory, 50(7):1482–1496, July 2004.

[5] N. Vasconcelos and A. Lippman. A probabilistic architecture for content-based image re-
trieval. In Proceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR’00), pages 216–221, Hilton Head, South Carolina, USA, 2000.

9

